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A numerical model is developed to study the effects of friction on the steady exchange
flow that evolves when a barrier is removed from a constriction separating two
reservoirs of slightly different densities. The model has excellent agreement with an
analytical solution and laboratory measurements of exchange flows through channels
of constant width and depth. The model reveals three viscous flow regimes for a
convergent–divergent contraction of constant depth, and three additional viscous
flow regimes when an offset sill is introduced. Each regime is characterized by a
different set of internal hydraulic control locations. Examination of the predicted
interface profiles reveals that it is not possible to distinguish between different flow
regimes on the basis of these profiles alone.

1. Introduction
Two-layer exchange flows often occur when a constriction separates two bodies of

water with different densities. The density difference may arise owing to differences
in temperature, salinity and/or sediment concentration. Understanding exchange flow
is important when addressing water quality issues in semi-enclosed bodies such as
harbours, bays, fjords and inlets. A classic example is the exchange of more saline
Mediterranean water with Atlantic water through the Strait of Gibraltar (e.g. Armi
& Farmer 1988; Farmer & Armi 1988). Important exchange flows occur in other
straits including the Bosphorus and Dardanelles which connect the Aegean and
Black Seas via the Marmara Sea (Oğuz & Sur 1989; Gregg & Özsoy 2002) and
the Bab-el-Mandeb which connects the Indian Ocean to the Red Sea (Murray &
Johns 1997). Understanding exchange flow can be important in engineering problems.
For example, the design of a bridge linking Denmark and Sweden required zero
reduction in exchange flow through the Great Belt between the Baltic and North Seas
(Ottesen Hansen & Møller 1990). Another exchange of environmental concern is that
of heavily polluted water from Hamilton Harbour with Lake Ontario water through
the Burlington Ship Canal (Hamblin & Lawrence 1990).

Many important features of exchange flows can be described by steady hydraulic
theory of two-layer inviscid (frictionless) flows (e.g. Armi & Farmer 1986; Farmer
& Armi 1986). Maximal exchange occurs when the flow through a strait is isolated
from reservoir conditions by supercritical exit regions, requiring the presence of two
internal hydraulic controls. Submaximal exchange occurs when one of the controls
is lost because of reservoir conditions (Armi & Farmer 1986). In the absence of
friction, the flow is relatively easy to predict because controls are generally located
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L (km) H (m) fb α = fbL/H Source

Bab el Mandeb 160 172 0.012 11.2 Defant (1961)
160 180 0.03 26.7 Assaf & Hecht (1974)
160 180 0.012 10.7 Maderich & Efroimson (1990)

Bering Strait 100 50 0.002 4.0 Pratt (1986)
Bosphorus 30 60 0.0046 2.3 Defant (1961)

30 60 0.03 15.0 Assaf & Hecht (1974)
20 20 0.002 2.0 Pratt (1986)
31 40 0.012 9.3 Maderich & Efroimson (1990)
30 50 0.0046 2.8 Oğuz et al. (1990)

Burlington Ship Canal 0.84 9.5 0.0052 0.4 Dick & Marsalek (1973)
Dardanelles 60 70 0.012 10.3 Defant (1961),

Maderich & Efroimson (1990)
60 70 0.03 25.7 Assaf & Hecht (1974)
65 55 0.0046 5.4 Oğuz et al. (1990)

Denmark Strait 500 500 0.002 2.0 Pratt (1986)
Ecuador Trench 300 300 0.002 2.0 Pratt (1986)
Gibraltar 60 300 0.012 2.4 Defant (1961)

60 350 0.03 5.1 Assaf & Hecht (1974)
20 200 0.002 0.2 Pratt (1986)
50 300 0.012 2.0 Maderich & Efroimson (1990)

Iceland–Faroe Ridge 400 400 0.002 2.0 Pratt (1986)

Table 1. Dimensions and frictional parameters fb and α for various straits. Definitions of fb vary;
here we have adjusted all values to be consistent with the present paper.

at topographical features such as the crests of sills and the narrowest sections of
contractions (Armi & Farmer 1986).

The introduction of friction causes controls to move away from their inviscid
positions both in single-layer flow (Henderson 1966; Pratt 1986) and in two-layer
flow (Zhu & Lawrence 2000). To avoid the need to determine control locations in
advance for a frictional channel, an unsteady model is used in the present study. The
control locations are determined by running the unsteady model to steady state.

The effect of friction on two-layer flow was first considered by Schijf & Schönfeld
(1953) in their classic study of a salt wedge. Anati, Assaf & Thompson (1977)
examined the relative importance of frictional and inertial forces in exchange flows
in constant-width channels. They classified the dynamic length of the channel by the
parameter fbL/H , where fb is the bottom drag coefficient, L is the channel length,
and H is the channel depth. In a short channel, fbL/H � 1 and bottom friction can
be neglected compared to inertial forces. In a long channel, fbL/H � 1 and inertial
forces can be neglected. In channels of marginal length, fbL/H ≈ 1 and both terms
are important. Estimates of fbL/H compiled in table 1 indicate that, in general, sea
straits are either marginal or long.

The objective of the present study is to investigate the impact of friction on
the steady exchange rate and the location of hydraulic control for various channel
geometries. The equations of motion and steady hydraulic theory are presented in § 2.
The numerical solution technique is outlined in § 3 and verified using the results of
previous analytical and laboratory studies of exchange flow in channels of constant
width and depth. The effects of friction on exchange through convergent–divergent
contractions both with and without an offset sill are examined in § 4. A summary and
conclusions are given in § 5.
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Figure 1. Flow configuration for model. (a) Side view of channel with sill. Convention is source
of less dense water at left-hand side (ρ1 < ρ2). During exchange, upper layer flows left to right and
lower layer flows right to left. (b) Plan view of convergent–divergent contraction.

2. Theory
Consider a system of two layers of homogeneous fluid separated by a sharp

interface with variables as defined in figure 1. We extend the approach of Schijf &
Schönfeld (1953) by allowing for variations in depth and width. The equations of
continuity and momentum in the two layers, neglecting vertical accelerations, are

b
∂y1

∂t
+

∂

∂x
(by1u1) = 0, (2.1a)

b
∂y2

∂t
+

∂

∂x
(by2u2) = 0, (2.1b)

∂u1

∂t
+

∂

∂x

[
1
2
u2

1 + g(y1 + y2 + hs)
]− g′Sf1 = 0, (2.2a)

∂u2

∂t
+

∂

∂x

[
1
2
u2

2 + g(y1(1− ε) + y2 + hs)
]− g′Sf2 = 0, (2.2b)

where t and x are time and space coordinates, channel width b and sill height hs are
given functions of x, subscript i = 1, 2 indicates upper and lower layers, yi and ui are
layer thickness and velocity, ε = (ρ2 − ρ1)/ρ2 is the relative density difference between
the layers where ρi are layer densities, and g′ = εg is reduced gravity.

The friction slopes for the upper and lower layers, respectively, are given by

Sf1 = − 1
2
fs
u1|u1|
g′y1

− fw u1|u1|
g′b

+ 1
2
fI

∆u|∆u|
g′y1

, (2.3a)

Sf2 = − 1
2
fb
u2|u2|
g′y2

− fw u2|u2|
g′b

− 1
2
fI

∆u|∆u|
g′y2

, (2.3b)

where ∆u = u2 − u1 is the shear. The friction factors f are defined by the shear stresses
τ on the bottom, surface, sidewalls and interface, respectively:

fb = −2τb/(ρ2u2|u2|), fs = −2τs/(ρ1u1|u1|), (2.4a, b)

fw = −2τw/(ρiui|ui|), fI = 2τI/(ρi∆u|∆u|). (2.4c, d )

To facilitate the investigation of frictional effects, the following simplifications are
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made. The density difference between layers is sufficiently small that the Boussinesq
approximation ρ1 ≈ ρ2 applies, so that the friction factors fw and fI are the same for
each layer and free-surface deflections are small. Zero barotropic forcing is assumed
so that the transport in each layer is equal. The equation for momentum in the
upper layer is subtracted from that in the lower layer, (2.2b)–(2.2a), and we non-
dimensionalize x by length scale L, yi and y by depth scale H , b by width scale B,

ui and ∆u by (g′H)1/2, and t by L/(g′H)1/2. These simplifications yield the following
four equations in the four unknowns u1, u2, y1 and y2.

y1 + y2 + hs = 1, (2.5)

y1u1 + y2u2 = 0, (2.6)

∂y1

∂t
+

1

b

∂

∂x
(u1y1b) = 0 (2.7)

∂∆u

∂t
+
∂EI

∂x
− Sf = 0, (2.8)

where the internal energy is

EI = hs + y2 + 1
2
(u2

2 − u2
1), (2.9)

and the friction slope is

Sf = −α
{
u2|u2|
2y2

− rs u1|u1|
2y1

+ rI
y∆u|∆u|

2y1y2

+ rw
u2|u2| − u1|u1|

b

}
. (2.10)

The non-dimensionalization has introduced the parameter

α = fb
L

H
, (2.11)

which is the ratio of bottom friction to inertia introduced by Anati et al. (1977).
Additional friction ratios have been introduced in (2.10):

rI =
fI

fb
, rs =

fs

fb
, rw =

fw

fb

H

B
. (2.12)

Each exchange flow is prescribed by the geometry of the channel, the density difference
across the channel, and the four frictional parameters α, rI , rs and rw .

2.1. Steady hydraulics

Armi (1986) has shown that the status of a steady two-layer flow is given by the
composite Froude number

G2 = F2
1 + F2

2 − εF2
1F

2
2 , (2.13)

where the layer Froude numbers are F2
i = u2

i /yi with ui and yi non-dimensionalized as
above. In the present study, the density difference between layers is small (ε� 1) and
the last term in (2.13) is ignored. Interfacial waves cannot propagate out of regions of
supercritical flow (G2 > 1), thus if flow in a channel is bounded by two controls with
supercritical flow beyond, flow is isolated from reservoir conditions. This is known as
maximal exchange (Armi & Farmer 1986). The above discussion presumes that long
interfacial waves are stable to small disturbances. The stability of long internal waves
is determined by the stability Froude number

F2
∆ =

(∆u)2

y1 + y2

. (2.14)
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Long waves are stable for F2
∆ 6 1. When F2

∆ > 1, internal phase speeds are imaginary
and internal hydraulics may no longer apply (Long 1954; Lawrence 1990).

Consider the steady solution of (2.8). For the inviscid case, internal energy is
conserved along a channel in the absence of hydraulic jumps. When friction is
included, shear stresses at the bottom, sidewalls, interface and surface result in energy
losses, i.e. dEI/dx = Sf . Substituting the equation for internal energy head, (2.9), into
the steady form of (2.8), we obtain an expression for the slope of the interface

dy1

dx
=
So − Sf
1− G2

, (2.15)

where

So =
u2

2

y2

dhs
dx
− u2

2 − u2
1

b

db

dx
, (2.16)

is the topographic slope due to changes in depth and width. The flow is subject to
hydraulic controls where the composite Froude number is unity, G2 = 1. At these
points, the topographic slope must equal the friction slope, i.e. So = Sf , as in single-
layer flow (Henderson 1966; Pratt 1986).

3. Solution technique
The present study focuses on effects of friction on the steady exchange flow that

evolves after a barrier is removed from a constriction separating two reservoirs of
slightly different density. In the absence of friction, steady solutions can be obtained
directly if the locations of hydraulic control are known. Armi & Farmer (1986)
and Farmer & Armi (1986) have derived inviscid solutions for simple geometries
(contraction, sill, and combination of contraction and sill). With the addition of
friction or with a complicated geometry, it is necessary to model the unsteady
evolution of the flow until steady state is achieved.

Inviscid, unsteady exchange flow was investigated by Helfrich (1995) who re-
arranged (2.5) and (2.6) to obtain

u1 =
−∆u(y − y1)

y
, u2 =

∆uy1

y
, (3.1a, b)

which allows (2.7) and (2.8) to be written in terms of the variables y1 and ∆u, i.e.:

∂y1

∂t
+

1

b

∂

∂x

{
∆uby1

(
y1

y
− 1

)}
= 0, (3.2)

∂∆u

∂t
+

∂

∂x

{
(∆u)2

(
y1

y
− 1

2

)
− y1

}
− Sf = 0. (3.3)

Equations (3.2) and (3.3) are solved numerically using the two-step Lax–Wendroff
method as outlined in Press et al. (1986). The method has second-order accuracy
in time and space. It is able to model the development and propagation of shocks
(internal hydraulic jumps) which can occur in exchange flows. Sommerfeld radiation
boundary conditions (Orlanski 1976) are applied at each end of the strait so that
information propagates out of the domain. In some cases, the inclusion of numerical
dissipation was required to control the growth of numerical instabilities at internal
hydraulic jumps. As in Helfrich (1995), the term ν(∆u)xx was added to the right-hand
side of (3.3). Numerical viscosities of ν 6 10−3 were sufficient to ensure stability,
without noticeably affecting the solutions.
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L H B W g′
(cm) (cm) (cm) (cm) (cm s−2) fb α rI rs rw

Gu (2001) 200 28 15.2 106 1.14 0.0104 0.074 0.375 0.0 1.8
Anati et al. (1977) 60 7.75 1.0 16 0.015 0.12 0.92 0.1 0.0 7.75

Table 2. Parameters from laboratory experiments of Anati et al. (1977) and Gu (2001).

The model was typically initiated as a lock exchange problem, mimicking the
removal of a vertical barrier in a channel. The exchange flow is established by gravity
currents which travel out from the centre of the strait. Once they reach the ends of the
channel, the gravity heads are swept out of the model domain by the open boundary,
establishing the steady-state solution. The choice of initial conditions did not affect
the final steady solution. The solution was considered steady when the variation in
time of the interface position became sufficiently small, i.e. y1(t+ ∆t)− y1(t) 6 10−8,
where ∆t is the model time step.

3.1. Model verification

The problem of exchange through a channel of constant width and depth opening
into reservoirs via sudden expansions, as depicted in figure 2(a), has attracted the
attention of a number of investigators. In this section, we compare the results of our
numerical model with the theoretical analyses and laboratory experiments of Anati et
al. (1977) and Gu (2001). The dimensions and frictional parameters for the laboratory
experiments are given in table 2. Gu’s (2001) laboratory flow was turbulent, and fb
was determined using the method of Thwaites (1949). The laboratory flow of Anati
et al. (1977) was laminar and we set fb = 16/Re. In both cases, we set fw = fb so that
rw = H/B. We estimate fI indirectly by fitting (2.8)–(2.10) to the experimental data
(see Zhu & Lawrence 2000).

Gu (2001) developed an analytical solution for exchange rate and interface position
by direct integration of the fully nonlinear hydraulic equation, assuming controls at
either end of the channel. His analytical solution is indistinguishable from our numer-
ical solution. Both the analytical and numerical solutions agree extremely well with
Gu’s (2001) laboratory experiment (figure 2b, c). Anati et al. (1977) did not determine
the precise interface profile analytically, but assumed a linear variation between the
hydraulic controls at either end of the channel (figure 2d ). For large portions of
the strait, this predicted interface position and the corresponding composite Froude
number differ from the measured values by an amount greater than can be attributed
to experimental error. Our numerical solution matches the experimental data of Anati
et al. (1977) extremely well (figure 2d, e).

The presence of sudden expansions at the ends of the channels provided a rigorous
test of the effectiveness of our solution technique. We can now tackle other geometrical
configurations with confidence.

4. Frictional exchange through channels of varying cross-section
To demonstrate some of the important effects of friction on exchange flows we

model exchange flow through a convergent–divergent contraction (figure 1). The
additional flow regimes caused by the presence of friction will be examined. An offset
sill is then introduced, resulting in further flow regimes. Together these results reveal
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Figure 2. Comparison of present model to the analytical and experimental results of Gu (2001)
and Anati et al. (1977). (a) Plan view of channel. (b) Interface and (c) composite Froude number
from •, laboratory experiment of Gu (2001) and —, from present model. The results of the present
model are indistinguishable from Gu’s (2001) analytical solution. (d ) Interface and (e) composite
Froude number from •, laboratory experiment and – – –, analytical solution of Anati et al. (1977)
and —, from present model. See table 2 for experimental parameters.

the sorts of behaviour that can be expected in the more complicated geometries of
natural flows.

A wide range of values of the friction parameter α are investigated to cover all flow
regimes. For the most part, the friction ratios are set at physically realistic values,
i.e. rs = 0, rw = 0.1 and rI = 0.1. Unless otherwise stated, these values will be used.
There are two exceptions. The first is that we start by setting rs = 1 because of the
symmetries associated with this case. Secondly, we investigate the impact of varying
rI , since the interfacial friction factor is not an easy parameter to determine in nature
(Zhu & Lawrence 2000).

4.1. Convergent–divergent contraction of constant depth

The convergent–divergent contraction (figure 1) has a form similar to that investigated
in the inviscid study of Helfrich (1995). The channel width is defined as

b = 1 + 4(1− exp(−x2)). (4.1)

The effect of friction on the flow through the contraction was investigated by
increasing the parameter α. In the initial analysis, the surface friction ratio was set
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Figure 3. Steady solution for contraction with increasing friction. (a) Interface position along canal.
(b) Composite Froude number. (c) Topographical slope minus friction slope. (d ) Stability Froude
number. α = 0, 0.1, 0.25, 0.5 and 1.0 from top to bottom in each panel (right-hand side in a).
Friction ratios are rs = 1, rI = 0.1 and rw = 0.1.

equal to one (rs = 1) and the interfacial and wall friction ratios were set at rI = 0.1
and rw = 0.1. The results for α = 0, 0.1, 0.25, 0.5 and 1 are illustrated in figure 3.

Setting rs = 1 yields some interesting and instructive results. The interface profiles
are anti-symmetric about the narrowest point (narrows) of the contraction (figure 3a).
At the narrows, the two layers are of equal thickness (y1 = y2 = 0.5) and equal velocity
(|u1| = |u2|), so that |∆u| = 2|ui|. In addition, b = 1 at the narrows so the layer flow
Qi = uiyi. Furthermore, since yi = 0.5 and ∆u = 2ui, Qi = 1

4
∆u and G = F∆ = |∆u|.

For inviscid flow, G = 1 at the narrows, so ∆u = 1 and the inviscid exchange rate
Qinv = 0.25. If the flow is viscous, |∆u| is reduced and Qi/Qinv = G = F∆ = |∆u| < 1 at
the narrows.

With increasing α, the nature of the flow varies progressively (figure 3). For the in-
viscid solution the flow is controlled at the narrows with supercritical flow everywhere
else in the strait (figure 3b). Once friction is introduced, two controls form equidistant
from the centre of the contraction. At the same time, hydraulic jumps move inward
from the ends of the strait (figure 3a). The value of α when the jumps first appear is
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Figure 4. Effect of varying friction ratios on exchange through convergent–divergent contraction.
Friction ratio for wall is held constant at rw = 0.1. Exchange is measured by layer flow Qi normalized
by the inviscid value Qinv = 0.25. Interfacial friction decreases from left to right (rI = 1, rI = 0.5,
rI = 0.2, rI = 0.1), with surface friction factor equal to bottom friction factor (– – –, rs = 1) and
with zero surface friction (—, rs = 0).

a function of domain length. With the jumps present, the flow is subcritical beyond
the jumps as well as in the centre between the two controls, with supercritical regions
between the controls and the jumps (figure 3b). Although flow is reduced compared to
the inviscid solution, this flow is still the maximal exchange for the specified friction
parameters, as flow in the channel is isolated from outside conditions by supercritical
regions.

The region of supercritical flow between the jumps and controls shrinks as α
increases, until it disappears at α = 0.62. When α > 0.62, the jumps and controls
disappear and the flow is subcritical everywhere (figure 3b). Thus, in addition to
the inviscid regime where flow is controlled at the centre with supercritical flow
everywhere else, there are two viscous flow regimes. When 0 < α < 0.62, the flow
has two sets of internal hydraulic controls and jumps. When α > 0.62, the flow is
subcritical everywhere.

The nature of the flow regimes is further illustrated by plotting So − Sf (figure 3c).
Recall from (2.15) that So − Sf = 0 at points of control. Note from (2.16) that for
the geometry we are considering So is always positive, except at the narrows where
So = 0, since u2 = −u1 there. From (2.10), Sf = 0 when α = 0, otherwise Sf > 0. Thus,
when α = 0, So − Sf = 0 at the narrows where G = 1, and So − Sf > 0 everywhere else
where the flow is supercritical. For 0 < α < 0.62, the So − Sf curves are lowered, since
Sf > 0, and there are at least two pairs of points where So − Sf = 0. The pairs nearest
the narrows are the controls and the more distant pairs correspond to the point where
dy1/dx = 0 while G 6= 1 (see (2.15)). For α > 0.62, So − Sf < 0 everywhere and the
flow is subcritical everywhere.

For all positive α, the flow is stable along the channel (F∆< 1). The stability Froude
number is highest at the narrows. As friction increases, the maximum value of F∆

decreases (figure 3d ). The layer flow rate of the steady solution similarly decreases
from its inviscid value of Qinv = 0.25 with increasing friction (figure 4). The reduction
cannot be neglected even if α is as low as 0.1.

4.1.1. Varying friction ratios

It is of practical importance to investigate the effects of setting rs = 0 rather
than rs = 1, and to vary rI . When rs = 0, the solution is no longer symmetric along
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Figure 5. Steady solution for contraction with zero surface friction. (a) Interface position along
canal. (b) Composite Froude number. α = 0, 0.25, 1 and 4 from top to bottom in each panel
(right-hand side in a). Friction ratios are rs = 0, rI = 0.1 and rw = 0.1.

the canal. The upper layer is less constrained resulting in higher composite Froude
numbers, particularly in the right-hand portion of the contraction. The effects of
varying α with rs = 0 are shown in figure 5. As in the case when rs = 1, the controls
move out from the centre with increasing friction. Hydraulic jumps move in from
the ends of the canal with increasing friction, appearing at the left-hand side first
(figure 5a). The left-hand control is drowned for α > 0.65; flow is now subcritical
except for the region between the right-hand control and the right-hand hydraulic
jump. Flow becomes uncontrolled when α > 2.8, with subcritical flow throughout
(figure 5b).

Varying rI does not change the basic features of the flow regimes, but it does
change the values of α at which transitions between regimes occur. We can classify
the regimes of viscous flow for varying α and rI according to the number of controls
(figure 6). When rs = 1, two viscous regimes are possible: a regime characterized by a
control on either side of the narrows; and an uncontrolled regime. In the absence of
surface friction, three regimes are observed: a regime with controls on either side of
the narrows; a regime with a control to the right of the narrows; and an uncontrolled
regime. The curve separating the two-control and no-control regimes for rs = 1 is
very close to that separating the two-control and one-control regimes for rs = 0. As
interfacial friction ratio rI increases, the transition to uncontrolled flow occurs at
lower α for both rs = 1 and rs = 0.

The effect of changing friction ratios on exchange rate is shown in figure 4. The
results are consistent with what we would expect. In all cases increasing any one of α,
rI or rs while holding the others constant results in a reduction of the exchange rate.
It is worth noting that α must be substantially less than unity before friction can be
ignored.

The friction ratios contribute to the friction slope Sf , (2.10), with varying degrees of
importance. Most natural channels are wide, so the aspect ratio is small (H/B � 1).
The wall friction ratio is thus small (rw � 1), so it does not affect exchange greatly.
Changing surface friction has an impact on the flow primarily where the upper layer
is active (i.e. where it is thinner) whereas the interfacial friction acts on both layers.
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Figure 6. Classification diagram for contraction. When α = 0 (inviscid flow) there is one control
at the narrowest point of the contraction. For α > 0 and – – –, rs = 1, two controls are present to
the left of the dashed line (CC) and flow is uncontrolled to the right of the dashed line (U). For
zero surface friction (—, rs = 0), three regimes are possible: CC, two controls; C, one control; U,
uncontrolled. Wall friction ratio is rw = 0.1 for all cases. +, values of α for which solutions are
plotted in figure 3 and © in figure 5.

Interfacial friction is proportional to the square of the shear (∆u)2 while the other
friction terms are proportional to the square of layer velocities u2

i . Thus, the exchange
rate is sensitive to variations in rI , which is of practical importance since it is difficult
to estimate the interfacial friction factor accurately.

4.2. Convergent–divergent contraction with offset sill

A sill offset from the narrows with its midpoint at x = −1 and with topography given
by

hs(x) = Hs cos{π(x+ 1)}2 for |x+ 1| 6 0.5, (4.2)

was tested with varying crest heights Hs. The effect of friction on the solution was
examined by varying α while holding the friction ratios constant at rs = 0, rI = 0.1
and rw = 0.1. As expected, the exchange rate decreases with increasing α and with
increasing Hs (figure 7). Somewhat less expected is the large number of flow regimes
that are revealed when Hs and α are varied. Each regime is characterized by a different
set of internal hydraulic control locations (figure 8). Six regimes are possible: SCC
(control at sill and two controls in contraction); SC (control at sill and single control
in contraction); S (control at sill); CC (two controls in contraction); C (single control
in contraction); and U (uncontrolled). The classification diagram that specifies the
regime of flow given α and Hs is complex (figure 8). We will illustrate the nature of
each regime by examining sills of height Hs = 0.6 and Hs = 0.1.

The variation in interface position, composite and stability Froude numbers for
various values of α for a sill of height Hs = 0.6 are presented in figure 9. Single
controls are present at the crest of the sill and the narrowest point of the contraction
(regime SC) when flow is inviscid (figure 9b). Flow is subcritical between the controls
and supercritical beyond. As α increases, the controls move outward while hydraulic
jumps move inward. The control at the contraction is lost first (regime S). Eventually,
the control at the sill is lost and the flow becomes subcritical throughout (regime U).

Note that the interface profiles are almost identical irrespective of the regime of flow
or the value of α (figure 9a). The inviscid case is the exception in that the flow becomes
very thin on the left-hand side of the sill. In fact, it becomes so thin that F∆ > 1
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Figure 7. Reduction of exchange with friction in contraction with offset sill of varying height.
Friction ratios are rs = 0, rI = 0.1 and rw = 0.1.
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Figure 8. Classification diagram for contraction with offset sill of varying height Hs. Friction ratios
are rs = 0, rI = 0.1 and rw = 0.1. Regimes are: SC, control at sill and one control in contraction;
S, control at sill; U, uncontrolled; SCC, control at sill and two controls in contraction; CC, two
controls in contraction; C, one control in contraction. �, values of α for which solutions are plotted
in figure 9 and •, in figure 10.

(figure 9c), indicating intense interfacial mixing that would thicken the lower layer.
There is a little more variation in the interface profiles for the other cases investigated
(see figures 3, 5 and 10). However, in all cases there exist different regimes of flow with
qualitatively very similar interface profiles. Furthermore, in natural flows which are
subject to more complicated geometry, continuous stratification and unsteady forcing,
any differences are likely to be masked or difficult to interpret. Thus, the interface
profile is a poor indicator of the regime of flow. A similar result was obtained by
Pratt (1986) for frictional single-layer flow over a sill.

The progression of regimes is shown for a sill of height Hs = 0.1 in figure 10. For
inviscid flow, there is a control at the narrows and the flow is supercritical everywhere
else. For very low values of α, controls appear on either side of the narrows (regime
CC). As α is increased, a control appears at the sill (regime SCC). The sill control
is only present over a narrow range of α, after which the flow reverts to regime
CC again. At slightly higher α, the left-hand control is lost, so that just one control
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Figure 9. Effect of varying friction on steady solution, for contraction (at x = 0) with offset sill
(at x = −1) of height Hs = 0.6. (a) Interface position along canal. (b) Composite Froude number.
(c) Stability Froude number. α = 0, 1, 2.5 and 4 from top to bottom in each panel (right-hand side
in a). Friction ratios are rs = 0, rI = 0.1 and rw = 0.1.

remains, located on the right-hand side of the contraction (regime C). Note that
there are three regime transitions for α < 0.5. Eventually (α > 2.55), the flow becomes
uncontrolled (regime U).

The various flow regimes described above result from the competing influences of
changes in depth and width. The values of α at which transitions occur are specific
to the particular geometry considered and would change with varying curvature of
the sill or the contraction, or location of the sill with respect to the narrows of
the contraction. The transitional values of α depend on the values of the friction
ratios. Additional sills and contractions would add to the number of possible control
locations and the number of flow regimes. Such refinements, although of potential
practical significance, would probably not add to our basic understanding, and are
beyond the scope of the present study.

5. Summary and conclusions
An unsteady, one-dimensional model of frictional two-layer exchange flow through

a strait was developed. Friction can be applied to the bottom, sidewalls, surface and
interface of the channel. The frictional parameters are

α = fb
L

H
, rI =

fI

fb
, rs =

fs

fb
, rw =

fw

fb

H

B
, (5.1)

where α is the ratio of frictional to inertial forces and rI , rs and rw are the friction ratios
for the interface, surface and sidewalls, respectively. To solve the model equations,
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Figure 10. Effect of varying friction on steady solution, for contraction (at x = 0) with offset sill
(at x = −1) of height Hs = 0.1. (a) Interface position along canal. (b) Composite Froude number.
α = 0, 0.25, 0.45, 1 and 3 from top to bottom in each panel (right-hand side in a). Friction ratios
are rs = 0, rI = 0.1 and rw = 0.1.

the channel geometry must be specified in addition to these parameters. Width and
depth can vary along the channel. The model was applied to a contraction with an
offset sill of varying height and to a constant-width channel with abrupt expansions
and constant depth. The effect of friction on the interface position, Froude numbers
and layer flows was investigated.

The model was solved numerically for the unforced steady solution by running
a lock exchange until steady state was reached. The unsteady model is useful for
finding the steady solution when it is difficult to predict control locations in channels
with friction and/or complex geometry. Model results compared well with laboratory
studies and with Gu’s (2001) analytical solution of steady exchange flow through a
constant-width channel.

The impact of friction on steady exchange rate is similar for all geometries studied
(figures 4 and 7). The layer flow rate decreases from the inviscid value with increasing
friction. The exchange is reduced by up to a half for a contraction of marginal length
(α = 1). Even for short contractions (α� 1), flow is reduced substantially from the
inviscid prediction. For a contraction with an offset sill, three changes of flow regime
can occur for α < 0.5. This result is of practical importance since most natural sea
straits are dynamically long or marginal (table 1). Thus, the applicability of inviscid
theory in predicting flow in sea straits is limited.

Traditionally, studies of two-layer exchange flow have assumed that flow is governed
by controls at topographical features such as a sudden expansion in width, the
narrowest point of a contraction, and the crest of a sill. Friction changes the location
of controls. With increasing friction, controls at topographical features move out-
ward while internal hydraulic jumps move inward from the ends of the channel.
The controls are lost when they merge with the internal hydraulic jumps. For con-
tractions with offset sill, six viscous regimes of flow are possible in addition to the
inviscid regimes. The transitions between regimes occur over a wide range of α.
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Uncontrolled flow occurs when α is sufficiently high. The different regimes cannot
reliably be distinguished from each other on the basis of the interfacial profiles
alone.
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Gregg, M. & Özsoy, E. 2002 Flow, water mass changes, and hydraulics in the Bosphorus.
J. Geophys. Res. 107 (C3), 10.1029/2000JC000485.

Gu, L. 2001 Frictional exchange flow through a wide channel with application to the Burlington
Ship Canal. PhD thesis, Dept of Civil Engineering, University of British Columbia.

Hamblin, P. & Lawrence, G. 1990 Exchange flows between Hamilton Harbour and Lake Ontario.
In Proc. 1st Biennial Environmental Specialty Conference, CSCE, pp. 140–148.

Helfrich, K. R. 1995 Time-dependent two-layer hydraulic exchange flows. J. Phys. Oceanogr. 25,
359–373.

Henderson, F. M. 1966 Open Channel Flow. Macmillan.

Lawrence, G. 1990 On the hydraulics of Boussinesq and non-Boussinesq two-layer flows. J. Fluid
Mech. 215, 457–480.

Long, R. R. 1954 Some aspects of the flow of stratified fluids II: experiments with two fluids. Tellus
6, 97–115.

Maderich, V. S. & Efroimson, V. 1990 Theory for water exchange across a strait. Oceanology 30,
415–420.

Murray, S. & Johns, W. 1997 Direct observations of seasonal exchange through the Bab el Mandab
Strait. Geophys. Res. Lett. 24, 2557–2560.
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